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II. On the Disturbance of the Steady Flow of an Inviscid Liquid
between Parallel Planes

By J. L. Syncg, Sc.D.,
Professor of Applied Mathematics, University of Toronto

(Communicated by G. I. TavLor, F.R.S.—Received November 14, 1933—Read June 7, 1934)
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I—INTRODUCTION

1—In a number of papers dealing with the stability of fluid motion, RAYLEIGH*
employed a certain method, which we may refer to as the * characteristic-value ”
method. For some problems this method gives results in agreement with observa-
tion. For example, it establishes that a heterogeneous inviscid liquid at rest under
gravity is stable if the density decreases steadily as we pass upwardf ; it establishes
that an inviscid liquid rotating between concentric circular cylinders is stable if, and
only if, the square of the circulation increases steadily as we pass outward. This
result was stated by Ravieicr], and its validity appears to be confirmed by the

* ¢ Proc. Lond. Math. Soc.,” vol. 11, p. 57 (1880) (Sci. Papers, vol. 1, p. 474) ; vol. 14, p. 170
(1883) (Sci. Papers, vol. 2, p. 200) ; “ Phil. Mag.,” vol. 34, p. 59 (1892) (Sci. Papers, vol. 3, p. 575) ;
¢ Phil. Mag.,” vol. 26, p. 1001 (1913) (Sci. Papers, vol. 6, p. 197) ; ° Phil. Mag.,” vol. 30, p. 329
(1915) (Sci. Papers, vol. 6, p. 341).

+ RavieicH, ¢ Proc. Lond. Math. Soc.,” vol. 14, p. 170 (1883) (Sci. Papers, vol. 2, p. 200).

1 ¢ Proc. Roy. Soc.,” A, vol. 93, p..148 (1917) (Sci. Papers, vol. 6, p. 447).
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44 J. L. SYNGE ON DISTURBANCE OF STEADY FLOW OF

experiments of TAYLOR,* but a simple mathematical proof by the characteristic-
value method was not given. I have recently supplied such a proof, extending the
problem to include a heterogeneous liquid.

But when the method is applied to some other problems, the situation is not so
satisfactory. Among the results to which RavrLeicH] was led is the following. If
an inviscid liquid flows between parallel planes, the motion is stable if d%u,/dy?
retains the same sign throughout the liquid, &, being the velocity in the steady motion
and y the distance from one of the planes. This result is deduced from the fact that
the characteristic values of a parameter in a certain differential equation cannot be
complex, the implication being that they are therefore real. RavLEiGH§ further
claimed that the method established the stability of a uniform shearing motion, for
which @?u,/dy* = 0. KerLvin|| and Love€| criticized the method, and a review of the
situation in 1907 was given by Orr.** In spite of the fact that its general validity
remains obscure, the characteristic-value method has been widely employed.f1 It
is not the purpose of the present paper to attempt to justify or to discredit the
characteristic-value method in general. The paper deals only with the simplest
of all stability problems, that of an inviscid liquid flowing between fixed parallel
planes. In §2 the method is discussed in some detail and in §3 an argument is
developed to show that RAYLEIGH’S criterion for stability, mentioned above, cannot
be legitimately deduced by his method. He proved that complex characteristic
values are impossible, and I now prove that real characteristic values are also
impossible. The conclusion to be drawn is that the characteristic-value method is
not applicable to this case.

In one of his papersi} RavLEiGH suggested another method, based on the conserva-
tion of vorticity. This method, which may be described as ““ the method of vorti-
city,” does not seem to have been developed, although it is more promising than
the characteristic-value method. Part III of the present paper contains a systematic
application of the method of vorticity to the problem of the disturbance of an
inviscid homogeneous liquid flowing between parallel fixed planes. With a slight
degree of indeterminacy, the distribution of vorticity determines the distribution
of velocity : in §4 some expressions for velocity in terms of vorticity are given. In

* ¢ Phil. Trans.,” A, vol. 223, p. 289 (1923).

T ¢ Trans. Roy. Soc. Canada,’ Sec. 111, vol. 27, p. 1 (1933).

1 ¢ Proc. Lond. Math. Soc., ’ vol. 11, p. 57 (1880) (Sci. Papers, vol. 1, p. 474).

§ ¢ Proc. Lond. Math. Soc.,” vol. 11, p. 69 (1880) (Sci. Papers, vol. 1, p. 486) ; ¢ Phil. Mag.,’
vol. 26, p. 1003 (1913) (Sci. Papers, vol. 6, p. 198).

|| ¢ Nature,” vol. 23, p. 45 (1880) (Math. and Phys. Papers, vol. 4, p. 186) ; ° Phil. Mag.,” vol.
24, p. 272 (1887) (Math. and Phys. Papers, vol. 4, p. 330).

4 ¢ Proc. Lond. Math. Soc.,” vol. 27, p. 199 (1896).

** ¢ Proc. Roy. Irish Acad.,” vol. 274, p. 9 (1907). :

11 Cf. SoMMERFELD, ¢ ArTi Cong. matemat. Roma,’ vol. 3, p. 116 (1908) ; HopF, ¢ Ann. Physique,’
vol. 44, p. 1 (1914) ; TavLoR, ¢ Phil. Trans.,” A, vol. 223, p. 289 (1923) ; Sexr, ‘ Ann. Physique,’ vol.
83, p. 835 (1927), vol. 84, p. 807 (1927). For a bibliography of the stability problem, see BATEMAN,
‘Bull. Nat. Res. Coun. Wash.,” vol. 84, p. 382 (1932).

11 ¢ Phil. Mag.,” vol. 26, p. 1001 (1913) (Sci. Papers, vol. 6, p. 197).
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AN INVISCID LIQUID BETWEEN PARALLEL PLANES 45

§5 a method is outlined for the determination of the effect of a finite disturbance
by a process of successive approximations involving integro-differential equations.
This process is not, however, employed in the subsequent part of the paper, the
argument being there confined to the first approximation, when we have to deal
with a single integro-differential equation for the vorticity. By developing the
vorticity as a Fourier series in » (measured across the stream) p is eliminated in §6 ;
¥ (measured along the stream) is eliminated in §7, on the assumption that the initial
disturbance is periodic in x and represented by a finite number of sinusoidal terms,
and the problem of the determination of the distribution of vorticity at time £ is
reduced to the solution of an infinite system of ordinary differential equations of the
first order for an infinite set of functions of #, whose values for ¢ = 0 are assigned
with the initial disturbance. There is a noteworthy difference between the charac-
teristic-value method and the method of vorticity : in the former the boundary
conditions on the walls (vanishing normal velocity) remain in evidence and
constitute the essence of the characteristic-value problem, whereas in the method
of vorticity these boundary conditions are automatically satisfied from the very
beginning of the investigation by the method of images.

In §8 it is shown that the infinite set of ordinary differential equations, to whose
solution the problem has been reduced, admit solutions in the form of power series
in ¢ which converge for all values of ¢, provided that in the steady motion the
velocities of slipping on the two walls are equal. In §9 it is shown how the co-
efficients in these power series may be calculated, and reference is made to the para-
bolic velocity-profile. The process of calculation is complicated and no actual
calculations are carried out for two reasons. In the first place, the most interesting
general question is that of stability and the most interesting profile the parabolic.
However, I have been able to establish the stability of this profile by a simple and
different method, so that there is no point in attempting calculations along the
lines of the present theoretical solution. Secondly, the question of an inviscid
liquid -is of comparatively little physical interest, and although the present paper
contains the solution of a classical problem, it may be of more importance in
suggesting, for the investigation of the disturbance of a viscous liquid, a method
more valid than that of characteristic values.

The question of the linear velocity-profile is not touched on. It is quite a special
case, and of little interest. The vorticity of the undisturbed motion is constant and
the vorticity of a small disturbance is carried along with the velocity of the
undisturbed stream. It hardly seems that anything further need be said of it.

IT—TrE CHARACTERISTIC-VALUE METHOD

2—Review of the characteristic-value method

Let there be an inviscid liquid of uniform density e, flowing in the direction
of the x-axis between parallel planes y = -4- b, the velocity-components being

u=u, (9), v=0. . . .. ... .. .. (21

G 2
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46 J. L. SYNGE ON DISTURBANCE OF STEADY FLOW OF

On this motion there is superimposed at time ¢ = 0 a distribution of small velocities.
(We shall confine our attention to two-dimensional disturbances). Denoting by
u', v, p’ the excesses of the velocity-components and pressure in the resulting motion
over the corresponding quantities in the steady motion, and neglecting the second
and higher powers of «, v, p" and their derivatives, the equations of motion take the
approximate form

o duy 10

5t T TV T G

oy, o — 1 2.2
5t T Uy T 22)

——
.

ou |, oV _
w1y =0

We seek to obtain solutions of these partial differential equations for ', o', p’
satisfying the following boundary conditions :—

' and ¢’ shall equal assigned functions of x and y fort =0 . . (2.3)
v =0fory=+46 t>0. . . . .. ... (2.4)

The assigned values of #’, v’ for ¢t = 0 are, of course, such as to satisfy the last of
(2.2) and also (2.4).

Let us assume that the initial disturbance is periodic in ¥ with period 2a. Leaving
aside for the moment the explicit expression of this initial disturbance, we seek
solutions of (2.2) of the type

=1, (y) " o=V, (pe"? p =P (y" . . (25)
where o, = nr/a, r being an integer (not zero), and ¢ is a constant. Substitution gives
z'ocr(uo-—c)U,—i—%QV,z —zzxr%
- __1ap
o, (ug —¢) 'V, =T Fy e .. .. (26)
y dvr J—
ZOC,.U,. + —(—1;— =0 J
so that (2.5) satisfy (2.2) provided that V, satisfies the differential equation*
a2V, d?u
=% ~Lop = 9 +Zy‘?°} V=0, ..... (27
and U,, P, are given by
LAV deduy g yiedY,
U’_oc,aﬁ)’ Pr—,a’a.,yV, (u, C><x,afy' . (28)

* RavrriGH, ‘ Proc. Lond. Math. Soc.,” vol. 11, p. 57 (1880) (Sci. Papers, vol. 1, p. 474),
equation (51).
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AN INVISCID LIQUID BETWEEN PARALLEL PLANES 47

Moreover, the boundary conditions (2.4) will be satisfied provided that
V,.()) =V, (=86 =0.. ... .... .. (29

The solution of (2.7) with the boundary conditions (2.9) constitutes a characteristic-
value problem, and we may expect that a solution (real or complex) will exist if and
only if ¢ has one of a set of characteristic values (real or complex). Assuming that
these characteristic values exist, let us denote them (since they depend on r) by

/S .. (2.10)
and let us denote the corresponding characteristic functions by
Vi, Vi oo o o v o0 o000 0L (2210)

If we build up infinite linear combinations from (2.5) of the form

u/: % (7‘#0) ;: ANU” (}’) eia,(x—c”t)
s=1

V=% (r#0) T AV, (y) e b (212)
r=—00 s=1
p/ — (:v: (T # 0) g: mePr‘Y (.y) ei“r (x—0, 1)
r=—00 s=1 J
where
_. LdV, N A A
I_J.rs —_— g_r d)} bl Pr.c - O(T dy V, (u() C) m'_ aj) 9 (2.13)

and A, are constants, arbitrary for the present, then these expressions constitute
formal solutions of (2.2) with the boundary conditions (2.4), and they will be
actual solutions provided that the required term-by-term differentiations of the
infinite series are permissible.

Turning now to the other boundary conditions (2.3), it appears from (2.12) that
the constants A,, are to be chosen so that

5 (r#0) 2 AU, () o }
r=—00 s=1

) - | L. (214)
E 00 EAV0)e

the left hand sides being the assigned initial velocities of disturbance. Since these
initial velocities are assumed to be periodic in x, it will be possible to expand
(v');=0 in the form

(0")1=0 ———rziiwgb, () e, . ... (2.15)
where, by virtue of (2.4),
é, () =¢,(—8)=0. . ... ... .. (2.16)
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48 J. L. SYNGE ON DISTURBANCE OF STEADY FLOW OF

The last of (2.2) then gives

’_aﬁ,\ - < dqsr zax 2.17
%xlﬂ =BG 21

and hence
wxo—z2@¢m1?”wm wu&u)....(m&

Since, by hypothesis, this is periodic in x, we must have d¢,/dy = 0, and therefore,
by (2.16), #,=0. Thus the equation of continuity demands that the term for
r =0 be absent from the expansion (2.15). Moreover, the arbitrary function
F () in (2.18) may be absorbed into %,, and hence we may regard the initial velocity
of disturbance as given by

MN—ZZO¢®1M

(2.19)
(Mmoo = (1% 0) 4, () e
In order to make the expressions for (v'),_,in (2.14) and (2.19) agree, it is

merely necessary to expand ¢, (p) in terms of the characteristic functions V,, ()
and choose A,; equal to the coeflicients in the expansion, so that

¢, () = 551 ANV (p). oo oo (2.20)
Then assuming that term-by-term differentiation is permissible, we have by (2.13)

L AN SR
m@”mffﬂb"fﬁwm"""@m

and thus the expressions for (u'),_, in (2.14) and (2.19) agree. Thus if the
characteristic values ¢, exist, and if the expansions and term-by-term processes
(differentiation and proceedmg to the limit ¢ = 0) are permissible, we have in
(2 12) expressions which give the disturbance at any time #.  If all the characteristic
values are real, it appears probable from (2.12) (and is accepted without question
in applications of the characteristic-value method) that #’, »’ remain small, and hence
that the given motion is stable. If, on the other hand, there are complex character-
istic values, there will be an exponential instability, because complex characteristic
values will occur in conjugate pairs. Hence the question of stability is reduced to
an examination of the reality of the characteristic values of (2.7). That is the essence
of the characteristic-value method.

The preceding argument has been given at some length, because comparatively
little attention has been directed to the infinite processes involved in the character-
istic-value method. Also, for the purposes of §3, it is desirable to point out the
necessity for continuity in the characteristic functions and their first derivatives. If we
take an initial disturbance such that («),_, and (v'),_, are continuous in x and y
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(and it is this type of disturbance which we have had in mind), then by (2.19) ¢, ()
and d¢,/dy will be continuous ; then in order that (2.20) and (2.21) may hold, it
is necessary that not only the characteristic functions V,,, but also their derivatives
dV,/dy, should be continuous. This point is important, because it is just this
continuity of the derivatives which leads to the results of §3. This necessity for
the continuity of the first derivatives was not admitted by Orr*, but it certainly
appears to be demanded if we assume the continuity of (’),_,; if we do not
assume this latter continuity, the whole treatment must be different. The critical
situation arises when we suppose that in the characteristic equation (2.7) ¢ has a
real characteristic value, equal to some value which #, takes in the liquid, let us say
for y = y,. If we divide (2.7) by 4, — ¢, obtaining

&V, Pu,)d
_@)T—{ + ”U} =0, ... ... (222

the coeflicient of V, becomes infinite for y = y,, provided that d?u,/dy* does not
vanish there. This is the ““ disturbing infinity > which troubled KerLviN (loc. cit.).
RavreicHT however held that it sufficed to have the function V, continuous every-
where, including such critical points, but that it was not necessary to have dV,/dy
continuous at such a point. For reasons already stated, this view does not appear
to be tenable, and we shall assume that dV,/dy must be continuous everywhere.

3—A criticism of RAYLEIGH’S condition for stability

Ravieicu] showed that if d?u,/dy® does not vanish in the range of y, then the
differential equation (2.7), with the boundary conditions (2.9), cannot be satisfied
if ¢ has a complex value. Hence, in accordance with the general method outlined
above, the motion is stable provided that real characteristic values exist and the
necessary infinite processes are legitimate. We refer to the non-vanishing of d?u,/dy*
as “Raviricu’s condition for stability.” We shall now show that no real
characteristic values exist. o

Let us first assume that ¢ has a real value outside the range of values of u,, and
let us put (writing V, « instead of V,, «,)

=Y @3

Uy — €

Then y is regular throughout the range b < » < b, and in terms of y the
differential equation (2.7) becomes

d

@,{(uo—@z y}___az (o — )% =0. . .. ... (32

* Joc. cit., p. 22.
t ¢ Phil. Mag.,’” vol. 26, p. 1001 (1913) (Sci. Papers, vol. 6, p. 197 ; in’particular pp. 198-199).
% ¢ Proc. Lond. Math. Soc.,” vol. 11, p. 57 (1880) (Sci. Papers, vol. 1, p. 474).
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50 J. L. SYNGE ON DISTURBANCE OF STEADY FLOW OF

Multiplying by x dy and integrating from — & to 4, we obtain

b rb 2 b
[(uo — 02 X%]_b ~[ oo (%) b—w| w—ard=0 (33
But y vanishes for y = + b, by virtue of (2.9), and thus the first term in (3.3)
vanishes. The resulting equation is satisfied only by the trivial y == 0. Hence
there is no real characteristic value outside the range of values of «,.

Let us now assume that there is a real characteristic value ¢, lying in the range of
values of u, and corresponding to » = ;. Let us assume that d?u,/dy? does not
vanish in the liquid. We shall first investigate the solutions of (2.7) in the
neighbourhood of » = y,, putting

P—=D =2 . (3.4)
We have
uy—c=uoz+ %2+ ..., ... .. ... (35

where 'y, u”’, are constants. Equation (2.7) becomes

%

) g T 2w + 4u" 2+ ...) + v’ +..3V=0. (3.6)

(W -+ Fu" 2 +

Substituting
V=z(a+az+...), .. . ... .. .. (37

we obtain as indicial equation, if «’, # 0,
mm—1)=0. ... ... ... .. (3.8)

But m = 0 is impossible, since «”, # 0. Hence m = 1, and we have for Va power
series starting with a term in 2. The other solution is*

V = (zlog 2) (a) + a1z + ...) 4+ power seriesinz; . . . (3.9)

it is inadmissible, since dV/dz is not finite for z = 0. Thus near y = y,, V is of the
order of z, and if we again define y by (3.1), y is regular throughout the range
—b<y<b

If 'y = 0, the indicial equation becomes
m*—m—2=0, ... ....... (310

and we must take m = 2 ; the other solution of (3.6) is again inadmissible, and ¥,
again defined as above, is regular throughout the range.

We then proceed exactly as in (3.2) and (3.3). Ify, is not a terminal point of the
range (— b, b), the first term in (3.3) vanishes since 3 vanishes at y = 4+ 4. On
the other hand, if y, is one of the ends of the range, then 3 and dy /dy are finite there,

* (f. Lovg, loc. cit., p. 208.


http://rsta.royalsocietypublishing.org/

JA '\

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

%

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

AN INVISCID LIQUID BETWEEN PARALLEL PLANES 51

and the contribution to the first term in (3.3) vanishes by virtue of the vanishing of
u, — ¢. Hence, on the assumption that d%x,/dy? does not vanish in the liquid, there
can exist no real characteristic value ¢ for the equation (2.7). Nor, as RAYLEIGH
showed, can there exist a complex characteristic value. Hence the characteristic-
value method is inadmissible in this case.

ITII—TuE METHOD OF VORTICITY

4—Expressions for velocity-components in terms of vorticity

Before proceeding to determine by the method of vorticity the effect of an initial
disturbance on an assigned steady motion, we shall first develop some expressions
for the components of velocity in a liquid confined between parallel planes y = + b,
the vorticity being assigned at the instant in question.

TraeoREM I—If a liquid moves irrotationally between the ﬁxed planes y = + b, excej)t Sor
the presence of a poini-vortex of sirength « at (%, 31), and if the liquid is at rest at infinity,
then the components of velocity at any point (x, y) are given by

. m (2 —2Z1) 7 (2—21)

u w_S—b<a h_T coth—T> N B )

where ' . ’ :
z =%+ v, Ry = %1 + U, Zi=%—U. . . .. (42

This is a known result, or immediately deducible from known results*, since the
system of images of the vortex in the planes y = + b form two collinear rows of
vortices of strengths « and — «. It is, however, easy to verify directly that (4.1)
gives a motion satisfying the following conditions :—

(i) The motion is without expansion and irrotational except for z = z, : this follows from
the fact that « — 7v is an analytic function of z for any point 2 between the planes
» = + b except 2 = z;.

(ii) The circulation in a circuit surrounding z, is « : this is seen from the fact that for
such a circuit

j(u—iv) (drt+idy) =r. . . . . .. L. (43)
(iii) v = 0 for y = + b: this follows from the fact that in general k
. - 2 cos 21
tanh E__(ilzl_). — coth M [ 20 , (44/\
40 4b sinh = 57 (¢ 419 — %) — ¢ sin 2%‘
and when y = 4 b this becomes
47!
2 cos 35
_:J:icoshn—_-——_—_(x ) g’ T (49
26 25

a pure imaginary. ’
* Lawus, ¢ Hydrodynamics,” p. 224 (1932).

VOL. CCXXXIV.,—A . H
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52 J. L. SYNGE ON DISTURBANCE OF STEADY FLOW OF
(iv) u~0, 00 as |x|-~o0 : in fact if

5 — x| > 22 Dlogd, (4.6)

we have
W(Z‘—Zl) W(Z—51>
————45 J— coth T

<8 exp <~ M) (A7)

i tanh 7

and so, as |x|~ o, u and v tend to zero as exp (— = |x| /2b).
TueoREM I1—If in the motion of a liquid between the fixed planes y = -+ b, the vorticity

is o (x,9,t), where as usual
o= (a” L (4.8)

ox 0y

then the components of velocity at any point (x, ) are given by
L i T (2—Z) n(z—&))
u—iv=ry (¢) + ) H (%1, 91, 1) <tanh ———————4b coth ———————’ 7 dx, dy,, (4.9)

where y, (£) is real and undetermined, and the integral is taken over the region between the planes.
If, for a certain t, o (x, y, t) = O outside a finite range of x, or if

llllm o (x%)=0 .......... (4.10)
then y (t) is the velocity at infinity.

While the validity of (4.9) is indicated by the way in which it is constructed from
(4.1) by putting 20 dx, dy, instead of «, and integrating, to prove the theorem
rigorously we have to establish the following points (i), (ii), (iii) :

(i) The integral in (4.9) converges (provided that o is bounded). The convergence at
infinity is obvious from (4.7). We have also to consider convergence at poles of the
integrand, which can occur only where

TC(Z'—Z1)_ Z_CE W(Z—z1)= .
g = (2n + 1) 5 or —Sg =, . (4.11)

where 7 is zero or an integer. Since z, Z;, Z; are confined to the strip — b <y < b,
the only singularity is at 2, = z; thisis a pole of coth {r (2 — z,)/46}, and also of
tanh {r (z — z,)/4b} if z lieson y = 4 b. Now

w (2 — 24) _ 45 .
coth 17 Py +fz—2z), - . . .. (4.12)

where f tends to zero as z, approaches z. Thus the question of the convergence of

[['o (5020 8 cotn rk—a) 21) gx, dy,
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reduces to that of the convergence of

1
21 —X

q o (%1, 91, 1)

J

dx, dy, ;

in polar co-ordinates 7, 6, having z for pole, this last integral becomes

f j o (20,0, 8) edrdo, . .. ... ... (4.13)
which obviously converges. If z lies on y = 4+ 4, then
"(2—Z) gt B2 %) gm(Z—Z)
tanh T3 tanh 17 coth 7 (4.14)

and the convergence of

H o (%1, ¥, t) tanh 1%2}) dx, dyl‘
follows as above. Thus the convergence of the integral in (4.9) is established.
(ii) Equation (4.9) defines a motion without expansion and with a vorticity . For any
point ¢z in the liquid (not on a wall) we have

tanh _”_(Z_Ai_b_@ — coth & (Zzi; ) . (z4£_z;) + ‘% F (z, 21, 01), (4.15)

where, for all values of x,, »,, F is analytic in z, without poles. Thus (4.9) may be
written

u—1v=y () “}%”‘”(xla-yl’ t) :

R
+ jj (&) (xl,yl, t) F (/:’, xl),yl) dxl Q’yl' (416)

We may differentiate under the sign of integration in the second integral, and so
obtain ‘

< 9. _. l—a—> ” © (xl,_yl, t) F (2, 1, 01) dx, dy,

dx, dy,

% 10y
0 10
= [0 tau 0 (5= F5)F @ r2n) du
=0, . . e (4.17)
Moreover,
1 . .
jj o (%1, 1, 1) =z dxy dy, = H o (%1, )1, 1) X pe % dxy dy,

—i[[ o o 125 dn dn,  (4.18)

H 2
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54 J. L. SYNGE ON DISTURBANCE OF STEADY FLOW OF

where r = |z — z,|. But if we have a two-dimensional distribution of attractive
matter of density o, the logarithmic potential at (x, ») is

V(58 =0 (o log T dudn, ... . (419)
and the components of attraction are

0 — oV —
_X = ”‘ o (%1, )1, 8) Xy - xdxl dys, __}._ = ”‘ o (%1, Y1, t).yl = J dry dy,.  (4.20)

ox 0y
Also
0tV | 02V
—aF + @;_5 = — 21w (x,_y, t). ....... (421)
We have then
[[o (e ) =2 dxaj)=—————|—a—V . (4.22)
- 15 1 z-— 2 1 1 ay . e
and so, by (4.16) and (4.17),
o 1o v ifo _1ay/_ oV .oV
<5§“7@) (u—w) = ;<ax 7 a)< + y>
iy, a2y
T om\ ox? 0y?
= — 2o (%, 9, 0. . . . . ... (4.23)
Therefore
ou , v ov  ou __ o
P -+ T 0, Fr i 20 (%, 9, 8), . . . .. (4.24)

as it was required to prove.

(iii) v =0 for y = + b ; this follows at once from (4.5), since the integrand in
(4.9) is a pure imaginary if y = + b.

We have seen that the velocity distribution given by (4.9) has the required
vorticity and satisfies the boundary conditions on y = + 4. A motion satisfying
these conditions is undetermined only for the possible superposition of an irrotational
motion satisfying the boundary conditions on y = -+ 4. But the most general
irrotational motion of this type is a translational velocity parallel to the x-axis :
thus theorem II is established, except for the last sentence. To establish that, we
have to show that under the stated condition the integral in (4.9) tends to zero
as x| tends to infinity. Let x be large and positive ; let us divide the liquid into
three regions R;, R,, R;, such that for a variable point (x;, 1)

inRy, % < x/2; inR,, #/2 < x, < 3x/2; in Ry, 32/2 < ;. (4.25)

If & is the maximum of |w (%;, 4, )] in the liquid, then by (4.7) the contribution
to (4.9) from R, is less in absolute value than

45 [ exp(— Ei’%ﬁ))dl,._é‘b_exp< o 42)
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The contribution from Rj is less in absolute value than this same expression, which
tends to zero as x tends to infinity. As to the contribution from R,, let »’ be the
maximum of | o (xy, 4, ¢)| in this region. Now it follows from (4.7) that

mtanh’i_({l—;@ — coth %) ddy, <K, . .. (4.27)

where the integral is taken throughout the whole liquid, and K is some constant.
Hence the contribution to (4.9) from R, is less in absolute value than Ko'/4b.
But if o (x, », ¢) vanishes outside a finite region or if the condition (4.10) is fulfilled,
this contribution is zero or tends to zero as ¥ -~ o . The case where x -~ — @ is
similarly treated. Thus as |x| -~ o0, the integral in (4.9) tends to zero, and
theorem II is established.

It follows immediately that if there is superimposed on the motion

u=1u (), v=0, . .. ... ... (4.28)

a motion with vorticity «’, then the velocity-components at (x, y) are given by

~

. ) — 7)) —_—
u—ww=y (t) +u, (») + é—lz-b “ o (%1, 91, 1) <tanh Tt_(%—zl/ — coth %—z—l)>dx1 1,

(4.29)

where y (#) is real and undetermined.
In very general circumstances, the vorticity o (x, », t) may be expanded for the
range (— b, b) of y in a Fourier series of the form

o (%, 8 = 2 O (x,0) exp (reyi/b). . . . . . . (4.30)

r=—

We shall now establish the following result :

‘THEOREM III—If] in a liquid moving between the fixed planes y = L b, the vorticity is
gwen by (4.30), then the components of wvelocity du, dv at a point x, y due to the vorticity in
the strip x = x1, x = x; + dx, (and its images) are given by the formule

for x, < x,
du—idy=idey 3 (0, (1, 1) = O, (1, O} exp {fm (1, — 2)/8)
didy, 2 2 2+ Dr (e, —2) (— 102 +1)
2, F, O, ) exp o rr g (43D

for x, > «x,
du—ido=idey 3 (D, (s, 1) = O, (v, ) exp (pr (2 — %)/b)

I 20+ 1) = (2 —x1) (=1)"*(2p+ 1)
e 2L R O e ) exp % @)= 32
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56 J. L. SYNGE ON DISTURBANCE OF STEADY FLOW OF

To establish this result, we have by (4.9), for the components of velocity due to the
strip in question,

du—ido— T [ o (%1, 91, 8) <tanh TR =) com E(i“?i)-) dy,.  (4.33)

4b 4b

We now substitute for o (¥, 9, ) the series (4.30) with x,, », instead of #, y, and for
the other part of the integral one or other of the expressions

for x; < x,

: T (2= 2Z1) T (2 — z1)
Fanh ) coth 7

_ o5 _mmz\ [, mrz, mmnzy )
___251 exp< 26>i( 1)™ exp ) exp be .. (4.34)

—23 eme_”"z{—- (—1)" exp< mnzl) + exp< m;bz‘ } (4.35)

Thus we obtain

for x; < x,
eyl mrz

du——zdv::—b—J 5 2 O, (x, t) exp = exp(———)

—br=—ow m=1 2b /

8 {( 1) exp g — exp " JL""}1

S E 0 () ep BT D (L L) . (436)

for x, > x,
iy =Y 5§ rong M2
du — idy = 2b‘j—b,=§:‘w x @, (x,, t) exp 7 CXP oy
e (= o (M) 4 exp (228 g
=M E 5 0, () exp TR (1L 1), (437)
r=-=00 m=1 .
where
b .
Irm == J‘—b eXp {(r + %m) T"))]Z/b} d_))'l
20 if2r +m=20 l
= 14b (— 1)sinlmr .. o Cr=0,+1,...;m=£1, +£2,..).
@ tm @ FAms 0) (4.38)
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Dividing the summations in (4.36), (4.37) into summations for m even and m
odd, we see that for any even value of m (m = 2p) there are surviving terms only
when r = + p. Hence (4.31), (4.32) follow immediately.

Adding together the expressions for the velocity-components due to all the strips
which make up the whole liquid, and adding the arbitrary function as in (4.9), we
establish the following result directly by integration of (4.31), (4.32),

TueoreM IV—If the vorticity in a liquid moving between the fixed planes y = 4 b is given
by (4.30), then the components of velocity at any point x, y are given by

u—iv =y (¢) + ,él M, (x, t) exp (— pryi/b) + El M/, (x, t) exp (pnyi/é) |

_ & g3 L,, (% ) exp <_ (2p + 1) ﬂ)’i> (= 1)+ (2p + 1)

T % ) (% F 1) —an
R (20 + 1) mpi (—1)™** (2p + 1)
T B Ve e S e e e - (439)

where

L, (% ) = r_m exp (2p + 1)27;) (%, — x) ®, (x,, 1) dx,

]

L, ,(x1) = j exp (2 + 1)27;) (x = ‘61) D, (x1, ) dx,

x

by (4.40)
M, (0 =i | exppl(x—lb__—x-)-{d)p (1, &) — @, (11, )} d,

— 0

M, (5 0) =i | exp‘—bn(—x-b—x—l){d)l, (1, ) — D_, (x2, 1)} da,
(r==0,+1,...; p=0,1,2,...),

and y, (%) is an arbitrary real function.

Since w, as given by (4.30), is a real quantity, the quantities
(I)y + (I)—r, i((D - q)-r)
are real. Hence, picking out the imaginary parts of (4.39), we have

—
t

+

I M8

(M, (v, 8) — M_, (x, 1)} sin (pny/b)

1

. e (2 £ )my (— 172 + 1)
EO {L,,(x,8) — L, (x, £)} cos 55 C7E Pt (4.41)7

4 @©
- X
Tr=—wp
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S5—Finite disturbance : reduction of the problem to the solution of a system of integro-
differential equations

Let us now consider how the preceding results are to be applied to the problem
of stability. For any two-dimensional motion of an inviscid liquid, we have the
equation which expresses the conservation of vorticity :

do _ 9
a’t“@t+u +v =0. . ... . ... (51

Let us consider the motion to be a superposnlon on an undisturbed flow u = u,( ),
v = 0, for which the vorticity is

of a disturbance for which the velocity has components #’, v" at time ¢ and for
which the vorticity is ’. If we assume the disturbance to be small and neglect
second and higher powers of small quantities, (5.1) takes the approximate form

0 d*u, ,
+ 0 a‘; _—%—?J;uzov f— 0, ........ (5.3)

a familiar equation. If we write

tanh f—%}—z—l) — coth —Tiz—ég—zl—) = R (%, 9, x;, 1) + 1S (%, 9, %1, 1),  (5.4)
where R and S are real, (5.3) may be written (¢f. (4.9))

0 ’
<8t - Uy ()), P >(’° (x,)’, t)

. .
+§1b‘%:‘0jj "), (xla_yla t) R (x:.))s xla.))l) dxl 4))1 = 0 st (55)

This is an integro-differential equation for the determination of &’ (%, 9, £), the values
of o’ (x, », 0) being assigned. When o’ has been determined, the velocity at x, y, ¢
is given by

u—iv=7() +u0) +g o G ) R+ dndn, . (56

where y (f) is a real function, undetermined in the absence of further information.
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To push the investigation beyond the first approximation, we may proceed by
writing for the velocity-components of the disturbance and the corresponding
vorticity

u = u,(l) ‘l“ u’(z) + cee 9
Z), = ?}’(1) + 0'(2) + cee

R G A
w :"0)’(1)+ (D,(2)+ e ’ (

r al) au!(,)\
CnTz <8x ay) 7

the subscripts indicating order. Substitution in the exact equation (5.1) gives

0 \
5t (o'qy 4 '@ -+ o) - (uy + 'y + u'y + ) EP (‘0 o+ o'yt )

’/

+ (w + Ve + ) — b Zy‘;ur 0’y 4, )_‘0, .. (58

from which we obtain formule for successive approximations :

aO) (1) 80)’(1) 1 dzu ’ .

ot —i Ox _"'2_4}}200(1)——-'0, e e e e e e e e e e e e e e (5.9)
0w’ 80)5 d%u, , . O’ , oo’
vl g Ty~ — iy B0 20 50)

and generally

2o, 0w, d?u )
T() + u ax() - %‘Z))TOZN”) Jo (%, 2, 1)

1/ o o (5.11)
fur= =5 (00 22 4wy 220m) (1,2,

These equations form an integro-differential system when we substitute for ',
v, from

W — 10w = tw () + 55 H o'y (X1, 915 1) (R 4-148) dxy dyy, . . (5.12)

where 3, (#) are real undetermined functions. This indeterminacy does not
present itself in calculating the vorticity to the first approximation, since only the
imaginary part of the expression is required {(¢f. (5-5)). If the disturbance is
“localized >’ in the sense of theorem II, the functions ¥, (f) will vanish. Other-
wise the removal of the indeterminacy requires some further data, such as the value
of u’ at some special point for all values of ¢

VOL. CCXXXIV.—A I
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With the equations (5.11) are to be associated the initial conditions

o' gy (4,9,0) =0 (x990, . ... ... . (513
this being the initial vorticity of the disturbance, and

©'w (%,2,0 =0, @®=2,8.). .. .. ... (514)
<<:]‘ 6—Small disturbance : elimination of y
:é Let us consider the first approximation, for which the vorticity of the disturbance
>.4E satisfies (5.3). Let the vorticity of the disturbance be expanded in the form
@)

23] w

ity o (1,0,0) = T 0, (5 1) exp (rifh). (6.1)
Eg The problem of determining the motion, when the initial disturbance is given,

consists in finding @, (x, ) when ®, (x, 0) are assigned.

172
§% Let us now expand the several terms of (5.3) in Fourier series of the above type.
EE We have
Q=0 00 5 2% o (rmyilh), .. ... ... (62
OZ at 7= — o at ’
=< and
£ g
u, —a—(; = X H, (x, §) exp (rmyefb), . . o .. . (6.3)
where
1 sz 00, :
(o) =g | w0 ¥ Srepll—nwild
— s ALY 84
$=— ’ 8x
where A, , are constants,
A, =L /By d 6.5

= | (el =) wiBd. .. (65
__\1 ~ As for the last term in (5.3), v’ is given, without change of notation, by the series
§ — written in (4.41). Thus
O: 1 dzu,, ’ 20:0 \ '/b) 66
e —A—g@mv—yz_wj,(x,t,exp(myz N (SX5))
E 8 where
[—( W . 1 b d2uo ’

Jo )= — 5| =20 exp (— rnyi/b) dy
29 4bJ - dy?
@) o
=0
EE = —1 p§=31 B, ,{M,(x,t) — M_, (x, t)}
225
gv 23 3 : (=D Ep+1) :
%g 7;s=‘_‘w pEO ("’,11 {Ls,p (x: t) — L s b (xa t) } (217_'_ ])2 —4s2 > (67)
o=
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where B, , C, , are constants,

1 (" d%u, eyt . [pry) 1
B j exp <—— —l> sin (—;) dy

"P2h )y dye b
1@ N (24 1) (6.8)
- - U _ Ty
Cor = 7 j_b 0 eXp( b ) Cos gy &

By (6.2), (8.3), (6.6), the several terms of (5.3) are now expressed as Fourier
series. 'The coefficient of exp (rnyi/b) is then to be equated to zero, which gives

EOEH, (5 ) F L6 0 =0, (r=0, &1 £2.); (6.9)

hence we may state this result :

TurorREM V—When the steady motion u = u, (p), v =0, between the fixed planes y = + b,
is slightly disturbed, and the vorticity of the disturbance is expressed in the form (6.1), the
Junctions @, (x, 8) satisfy the infinite system of integro-differential equations

0P x oD
ot —{—s‘:—wA”S ox

—1 3 B, M, (5 0) — M, (v, 1))

2 2 2 ' Y (— 1)+ 2p41)
225 Gty (60 — LG, (s gy = 0, (6.10)

(1'_—_-: O, -+ 1, :]:2, ),

where M,, M',, L, ,, L', , are functions of «x, t, obtained jfrom the ®’s by integration
according to the formulae (4.40), and A, ,, B, ,, C, , are constants, given by (6.5), (6.8) and
depending only on the velocity-profile of the undisturbed motion.

If u,, d*u,/dy* are expanded in Fourier series,

U, = 5 U, exp (grgyi/b), d?u,/dy? = s 3 V, exp (¢grpi/b), . (8.11)

g=— q= —
we find from (6.5), (6.8)
A =U_,

7
Bmz = 5 (VH'II — V,_,)), (6.12)

'Y"_'_"_‘J

A A () e g FY

G,=2 § v (=l

12
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62 J. L. SYNGE ON DISTURBANCE OF STEADY FLOW OF
We shall now write (6.10) in another form, which is in general less compact, but

which is of interest for the cases where g, is either an odd or an even function of .
Let us write (6.1) in the equivalent form

o (%,9,8) = 1F, (x,§) + 2 F, (x, 1) cos (rmy/b) - 3 G, (x, &) sin (rey/b),  (6.13)
r=1 r=1

so that F,, G, are real, and are connected with the complex @, by the relations

— o, ®, = 1 (F, —iG,),
{ Lor=o0,1,2 .. 5 G=0). (614)
G =1(0, — <I>_,/, o ,=31(F +:G),)

Let us change the sign of 7 in (6.10), and add the result to (6.10) : this gives

a 0
G N L N N O N S S
X s=1
7 2 an
- Q E (A1,s + A‘—r,s - Ar, —-s A—n Y
— 3 5 (B, +B_,) (M, (5, ) — M, (3, 0)
_2 zw O ) (o, (5 ) — Lo, (v 0y A=
- rp T Gonp) oy (5 o0 s 5y

+ﬁ Eww+am@wmn+hw@@~men~uwwm}

o (=D Ep ) _ :
(210 + 1)2 . 432i| - 09 (7’ - O, 1, 2, ) P T S S (615)

on the other hand, if we multiply (6.10) by ¢, change the sign of r and subtract, we get

oF,

3G, ok,
0x

wo;w
ct T

_l’ '2Z-(Ar,0_~'A——r()} 2s X

(Ar,s - A'—r, s + Ar, —s A—r, —s)

oG,

-1 - — —
_f 2 El (Ar,s A—r,s Ar, — + A—r, —s) ax

S (B, —B_,,) M, (%, &) — M/, (x, &)}

%0 (C..p — Corp) Loy (% ) — Lo, (%, 0)} é}ﬂ:—){

%(Qrwhgmwmo+hw@n—Lhmo~Lﬁp %, )}

o (=1 @2p+ 1) o
x<%+dym%4—ﬂ, P 1,20 e (6.16)
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If we adopt the notation

b
A, =3 A +A LA +A, )= lej_b”" () cos’b—"-ycosi’[;y.@,“
A, — — LA +A,—A, _—A %~lwu()m&émnyd
[ 4 Ty 8 -7, T, —$ —r, =5/ T 2b J_ 0 y b b )’
) . rb
A%N:imm_A%fwyﬁ—A%ﬂpzﬁwymwm1ﬁmqf@
rb
A,",r, s = % (Ar,s - A—r,s - Ar, —s + A_,’ __s) = 2—1b ] U, (y) sin b‘y sin b'y d))
1 ¢ &y . , (6.17)
B,,=%B,+B.,)= —2—[)'( ) a’y“’n cos—z sin ydy
, b
B",, = % (B,, —B_,,) = -l—bj . ‘fl;u“ sin rv;)y sin [)Zy dy
/ 1 a2 2 1
¢,=30G,+C.,,)= Z_bj b—lz-%OCOSZ’—;)—U—)COS (———-—————‘b +1) Tt-yd);
R _ v 1 (" Puy o1y (2])—!—1)1:_))
G np T 9 (Cr,p C—r,p} = ij , q,y sin A COS-————d J

all of which are real constants, depending only on the velocity-profile of the
undisturbed motion, and if we put

L”w (x’ t) = s,lf (x’ t) + L—s,p (xs t) - L’Mz (xa t) - L'—w (xa t) )
= r exp (2p + 1)272 (%, — x) F, (x,, ¢) dx,

[ ep @t NG

o L, (6.18)
M, (x, 8) =M, (x, 1) — M/, (%, ©) [

= r_w explﬂx_z"_x) G, (%1, t) dx,

— j‘:) explﬂxT_—xi) G, (%1, 8) dx,

then (6.15), (6.16) may be written

oG,

SR LS F L A% T2 3B, MY, (5 0)

o gD L o (@]
W[EJLmLmﬂ%nzp+l+ozz:chsM%) @p+nr—%2]“0’@im
O~QLZML

=1

, 1" Fo 2z ; - rer aG’; ” 1
-+Aﬂwx¢22A +%3A,”M—3%BmMpmﬁ
_2 % o1 (=1 5% 3 b (1 (2p 1)
[:;EOC ,pL 0,p (x: )2p+ 1 +2:§1p§ A rpL s!f( ) (2[)—!-1)2 452 :I'_‘O’ (620)

(r=1,2,..).
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64 J. L. SYNGE ON DISTURBANCE OF STEADY FLOW OF

These are in fact the integro-differential equations (6.10) reduced to real form.
We observe that L , is a function of the F-functions only, and M", a function of the
G-functions only.

Let us now consider the case where u, is an odd function of y ; d*u,/dy* is then also odd,
and we have by (6.17)

A, =A" ,=B",,=0C,,=0, . .. .. .. (821
and thus (6.19), (6.20) reduce to

[#, an odd function of y]

ad " aG; it " . . )
:=1A v o M7, (%, 8) =0, (r=0,1,2,...)
aG, 11 aFo - 2 aF.r
ot A ”OW_*—ZEA n -
BRI L) D]
ELEOC I P t) —f-st”E G, Ly (%, 1) 2p + 1)? — 4s =0
(7’ == 1’ 2, -..) J

On the other hand, if u, is an even function of y, then we have by (6.17)
AV, =A",=PB,,=0C",=0 ......... (6.23)
and (6.19), (6.20) reduce to

[u, an even function of ]
oF, A

r+A/ro 0+22 A,f.f

2 1 ( e e
-‘;L: ' L%, (% ) —{—2335 rp Loy (5 1) (2p+1)2—452]_

r=012..)

aGrerzz:A"" gh-gﬁﬁMﬂmQ:QU:LZ“J
p=1

§ =

@%

It is remarkable that the F-functions are separated from the G-functions in these

equations. Since
F, (x,t) =0, (r=0,1,2,...), . . . . . .. (6.25)

means that o’ is an odd function of y, and
G, (x, 1) =0, (r=1,2,...), . .. . . .. (6.26)

means that ' is an even function of y, and since (6.24) imply that if either (6.25)
or (6.26) is satisfied for ¢ = 0, it is satisfied for all values of ¢, we may state the follow-
ing result :
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AN INVISCID LIQUID BETWEEN PARALLEL PLANES 65
THEOREM VI—When the steady motion u = u, (), v = 0, between the fixed planes y = + b,
is slightly disturbed, and the vorticity of the disturbance is expressed in the form (6.13), the
Sunctions ¥, (x, t), G, (x, t) satisfy the infinite system of integro-differential equations (6.19),
(6.20), which reduce to (6.22) if u, is an odd function of y and to (6.24) if u, is an even
Sunction of y. If u, is an even function of y and if the vorticity of the disturbance is initially
an even function of p, it remains an even function of y, whereas, if it is initially an odd function
of p, it remains an odd function of y ; provided always that the disturbance remains small.

The fact thatif , () is evenin y and o’ (x, »,0)is odd in p, then o’ (x, y, #) is odd
in y, is of course obvious, since these initial conditions correspond to a motion
initially symmetrical with respect to the x-axis, and hence permanently symmetrical.
The other result, where «, () is even in y and o’ (¥, 9, 0) is even in », is unexpected.
The significance of even and odd vorticities is illustrated in fig. 1.

A A

OF
[}
[}
i
{
]
]
1
1
]

LA
]
1
{
]
t
4
]
[}
{
]
]
]
i
(]
]

[}
1
]
i
1
]
]
]
]
]
{
]
[}
]
!
]
[]
1
{
1
1
L
1
£ ]

D »

Even vorticity Odd vorticity
Fig. 1.

7—Small disturbance : elimination of x when the initial disturbance is periodic in x

The disturbance considered in §6 was small, but otherwise general. The argument
eliminated y, and replaced the partial differential equation (5.3) for o’ (x, y, t) by
the infinite system of integro-differential equations (6.10) for the functions @, (x, ¢).
Let us now assume that the vorticity of the initial disturbance is a periodic function
of x, with period 2¢, and let it be expanded in the double Fourier series

) ¢

S

e} =

o (%,2,0)= X I o,exp (rwpi/b) exp (srrifa), . . . (7.1)
where «,, are constants determined by the initial disturbance. The assumption
that o’ (r, 9, 0) is continuous in x will ensure that, for large |s|, l«,| is of
the order of 1/s%, while the assumption that 9w’/0x is continuous will ensure that
|a,;| is of the order of 1/|s[%, and so on. It does not appear, however, in the
later work that any assumption of this type will necessarily suffice to establish the
convergence of the series which we shall employ for the vorticity at time . We
shall therefore restrict ourselves to a sinusoidal disturbance, so that in (7.1) s takes
only a finite range of values. =~ We shall, however, retain the notation of (7.1),
understanding that

SOCIETY

OF

a,, =0 if [s|] >8. ... ... ... (710
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66 J. L. SYNGE ON DISTURBANCE OF STEADY FLOW OF

Let us now put ¢ = 0 in (6.1), which represents the vorticity of disturbance at
any time, and compare the result with (7.1). This gives

o, (1,0) = I o, exp (snai/a), (r=0,+1.). ... (7.2

These are the initial conditions to be satisfied in conjunction with the integro-
differential equations (6.10) : we shall seek solutions of the form

O, (5, f) = T o, ()exp (mrife), (r=0,%1,.), .. (7.3)

where
o, (0) = a,,, (rps=0,+1,...0. . . . . . .. (7.4)

When we substitute from (7.3) in (4.40) we obtain

L,,(x0)—L,, (xt) = j" _exp (2p + 1) T (x1 — ) S}_;w o, (1) exp (stx,i/a) dx,
— L exp (20 + 1) (x s ;éw o, (t) exp (snxyi/a) dx,
___8ib A exp (mxz/a) ,
o 7 s:z_w e (1) (2p + 1)% + 422 %
M, (58— M) (50 =2 E (o, (0 = oo () 2SR Lm0
(r=0,+1,...; p=0,1,2,...) J
...... (7.5)
where
Ao==sbla, .. . .. oL oL (7.8)

this being the ratio of the width of the stream (24) to the wave-length of the s-disturb-
ance (2a/s). Let us now substitute from (7.3), (7.5) in (6.10), and equate to zero
the coeflicient of exp (sma¢/a). This gives

d(‘)r s STCZ 2 . é ® .
T 2 A on () = 2 2 B s (o () = oo (0)
1606 & & A (— 1)72 (2p + 1)
+ . = C — 7
Pl Crp 00 (0 (20 + 1) + 422 (2p 4 1)2 — 4¢* =0 (7.7)

(r,s=0,+1,...),

which may be written, since B, , = — B, _,,

dﬁ)rs Tr:Z b 1 _
— " )\q_Z—wcoqx(t)[ rq ;Br,qqg_‘_;\z

l(iiz_lvc (=17 (2p 4 1) J
= oo P {2p DEFA4nE (2 F 1)F — 4g%

(rns=0, +1,...).

. —0, (7.8)
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Hence we may state this result :

Tueorem VII—If the vorticity of the small disturbance is initially periodic in x, and
represented by (7.1) with (7 1a), then the vorticit b of the disturbance at any time ¢ s
represented by the double series

o' (%,9,1) = % 2 o, (t) exp (rmyi/b) exp (snxi/a), . . . (7.9)
where the functions o, (t) satzw! the infinite system of ordmary differential equations of the
Sfirst order

bz dw”—i- A > N, o5 04, (1) =0, (rys=0,41,...; A, =sb/a), (7.10)
T g=— i »
with the initial conditions (7.4), N, , , being constants whick depend only on the undisturbed
velocity-profile and are given by v

1 1662 =

(= 1) (2p 4 1) )
A +

o [ T ) T A (2 - 1 g
A= |t (9) exp ilg— 1) wift} &y

N, =A,+ 2B

~_1_ ’ duo . .
Boo=g5 ], Ge &P (— i) sio (o) &y
c -1 [” Pty exo (— ryi/b) cos {(2p - 1) =p/26} dy
A ’

(ryg,s=0,+1,+2,...; p=0,1,2,...) J
Co L . (7.11)

If we substitute in terms of the Fourier coefficients from (6.12), we have
B2
N, a5 T Uq—r T ox2 (Vr+q \ q) 7 _I_ nE
39h% % ;} V (— )7 (2p 4 1) .
T e —w gm0 U {(2pF 1) 402 {(20 + 1)2 — 4¢23 {(2p + 1)2 — 4m?}
...... (7.12)
We shall revert to this expression in §8, and carry out the summation with respect

to p (see (8.13)).

In terms of the real functlons F, (x, t), G (%, t), 1ntroduced in (6.13), we have

3

F,(x,8) =®,(%,8) +O_, (x, 1) = , E f, ; (1) exp (smxi/a)

=012 D (7.13)

G, (x: t) = i{(I), (xa t) —o_, (x> t)} : =§E &rs (t)v‘?xpf(snxi/a)’, .
r=12 .. |

VOL. CCXXXIV.—A K
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68 J. L. SYNGE ON DISTURBANCE OF STEADY FLOW OF

where
Sos () = o, (t) + o_, (1), (r=0,1,2,...; s=0, £1,...)

) } (7.14)
g ) =ifo, () — o, (O (r=1,2..;5=0+1,..)

The determination of the motion is reduced to the determination of o, (¢), or,
equivalently, of f, , (¢), g,.(t). We easily derive from (7.10) the equivalent form

<

b_df. / SIRe
z_m'dt +%7\J<A1,0 +p§00r,p Kp,O,:)ﬂ,s

/ @
—I_ )\.\' Z QA’hq + z Gl’:l’Kp) q)") j;"“
p=0 /
b? 1 ’
n—zm3”>g“ =0
(7' == O, 1; 2) see s § = O’ * 1')
v, (7.15)
b dg,,: + %7\:<Amr,0 + ) EO C”r, 0 K,,, 0, 5> ﬁ)"

© e A

q=

1 r
=0

(7‘—":1,2,...; SZO,:]ZI”') J

d rree bz
_," 7‘; b <A r,q+7—t—2'

where the A’s, B’s and C’s are as given in (6.17) and

_ lep (=1 (2p + 1) N (AT
KI’:%“‘ =3 {(2,,0 _,__ 1)2 + 4)\52} {(Zp + 1)2 — 4q2} ( )

If u, is an odd function of y, then, by (6.21), the above equations reduce to

b d 7, s i 17 bz 1 , I

——L—{- A, 21<A r’q+;f—2mB"q>g””:0’ |
(r=0,1,2,..; s=0,%1,..)

‘2—2‘222%'5_{' %)\:< ”,r,O +[,§()C,/”O Kp,O,s> «ﬁ)xf & (7.17)
+ 7\,q§1<A”’r,q +ﬁ§’0 C‘”r,p Kﬁ, q»:> j;:x = O’

(r=1,2..; s=0,+1,..)
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If u, is an even funotion of », then, by (6.23), we have

b df,, : / ‘
27:2{1; +11<A’°+ Z, G ""’")f""

+ A s (Af,,q+ p> c'r’pK,,,q,s>fq,s=o
g=1\ p=0
(7‘:0, 1,2, ...; S:O,:I: 1, “.)

N

. (7.18)

b dg,, < 2 1 " > B
oni dt T q§1 A +n2 ¢ + ;\SzB re)8es =0,

(r: 1, 2, eee s S:O, :l:l) "').J

As we already know, there is a separation of the f~ and g-functions here. The
result of a symmetrical disturbance of a symmetrical velocity-profile is to be found
from the g-equation of (7.18), since «’ will be an odd function of y and we shall
have £, ,(f) = 0. In the case where #, is odd, the f-functions may be separated
from the g-functions by differentiating the equations.

Returning to the general case, for which. (7.10) or (7. 15) hold, we note that if
s = 0, we have

d&)r’ 0

= =0, (r=0,4+1,...).

Consequently
0, (f) = const. = «, (r=0,+1,..), . ... (7.19)

and hence, by (7.14),
Joo (&) 4 fro (8) = const. = o, o + o, 0, (r=0,1,2,..). . (7.20)
On account of (7.1a), it is easily seen that

o, (=0, |s|>S ......... (721

8—Solution of the system of equations by power series in ¢

The fundamental equations (7.10) may be written

ldo,, :
5 ;’T’ :F:E_wN,,q,s, 0 (r=0,+1,..;s==+1,+2.), . (81

where
= —int/b. . . . . . . . ... . (8.2)

It is not necessary to consider s = 0, since that has been dealt with in (7.19).
We observe at once that there is no “ interaction > between the different values
of s : the determination of the set of quantities

o, (1), (r=0, + 1,...),

K 2
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for one assigned s, constitutes in itself a distinct problem. It is quite otherwise with
respect to the other subscript, 7. A disturbance which is intially represented by a
single term of (7.1) will at once commence to spread into other terms, and will
demand an infinite series in 7 for its representation (except when s = 0).

Let us now consider the problem of solving the infinite system of differential
equations (8.1) with the initial conditions (7.4), for some particular value of s.
Tt is suggested by the form of these equations that we should seek solutions of the
type

o, (t) = P, exp (veh,T), (r=0,+1,...), .. .. (8.3)

where P, , v, are constants. If we substitute in (8.1) and eliminate P, ,, we obtain
for v, the infinite determinantal equation

i V_‘B,’q - Nr,q,.\' {(I,q=0,:!:l,-.-) == O, DI (8.4)
where 3, , is the usual Kronecker delta. If solutions

v (p=0,+1,..),
of this equation exist, and if P, * are definite sets of constants satisfying the set of
linear equations

VOPW = I N, ,P¥, (=0 +1.), .... (85
g=—o E

then
o, = 2 Q,,P Pexp (v?2,1), (r=0,+1..), .. (86)
p=—o

are formal solutions of (8.1), Q, , being arbitrary constants. To satisfy the initial
conditions (7.4), these constants must be chosen to satisfy

p=—o0

S Q,, PP =a,, (=0+1.) ..... (87

Were we dealing with a system with a finite number of degrees of freedom, so that
finite and not infinite processes were involved, ‘the above method would be excellent.
It does not appear applicable to our problem, however ; the equation (8.4) does
not appear to have definite roots. Moreover, the term-by-term differentiation of
(8.6), which would be an essential part of the argument, is too much to assume
- without proof of its validity.

 Rejecting, then, a solution of (8.1) by a series of exponentials let us investigate
the solution by means of power series, which are admirably suited to the type of
initial conditions (7.4). We shall develop a systematic method for the determination
of the coeflicients in the power series, and we shall show that under certain
conditions concerning %, the power series converge absolutely for all values of the
time.
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Let us put

m,,x(t):%nl O ), =0, 4£1,...;s=41 £2..), . (88)

where o, are constants to be determined. To satisfy the initial conditions (7.4),
we choose
) =, , (r=0,+1,...;s=+1,4+2..0. ... (89

Substituting (8.8) in (8.1), and equating the coefficients of equal powers of =, we
obtain

WY = T N,,,0f, (=041 ..;5=414+2..;2=012..). (810)
g=—w

With (8.9), these recurrence formule determine formally all the coefficients in (8.8).
Two points, however, must be cleared up. First, we must investigate the con-
vergence of the series (8.10) and, secondly, that of the power series (8.8).

With this in view, let us consider the magnitude of N, ,, as given by (7.12).
Let us first effect the summation with respect to p in the last term. Resolving into
partial fractions, and making use of the following known results,

o 1 w

= =0, = 1, 2,...
=0 (2p -+ 1)? — 4g? ¢g==x1 =% )
5 1 w2 =1, +2.)
p=0 {(2p + 1)2 —_ 4q2}2 - 6492 ) q - 9 Ly aee
ros (8.11)
y_ 1L _ =
@I 8
0 1 . -
pEo (zp + 1)2 + 4)\32 _ 8_7\_¢ tanh T A

we easily find

b (2p +1)°
% (24 12 + 423 {(2p + 1)* — 4¢3 (2 + 1)* — 4m?)
“%T‘zz (¢* + kxi\)z(mz T2 tal:chxjk s (pm=0, &1, .5 ¢ #m?),
~ Bl iRt ens L),
—3—;;—52<1 ~m—fc}—;ﬂ) (q=m=0) . . . . (8.12)

When we substitute these expressions in (7.12), we find, after some straightforward

reductions, 4
1 D S VA _g;j (— 1)22 tanh w, T (= 1)" Vi
q + 7\2 2 (12 —'- )\:2 A m=—w M2 “!" 7\52 ’

(ryg=0,+1,...; s= 41, £2,..).

N,,.=U_ + (8.13)
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Now, since V, are the coeflicients of the Fourier series for d?u,/dy?, we shall have
Vi <Ky [VI<K/rl, r=4L£2 ., . ... 814

where K, is some positive constant. Hence, if we put

S, = % %ﬂ r=0,4+1,.;s=+1,+2.), (815

we have

18, ] < L% (e — 1 } (8.16)

K{2+7\2 me=—o r)]r—l—m](mz—l—?\sz)

Since the expression on the right is unchanged on changing the sign of 7, we may
assume 7 positive. Then, for » > 0,

sol <k fie (84 5 oy 8 L ]

As 2y \m=— o0 m=—r+1 m=1, l r + m I m?

1,1 .
<K-1{ +7\2 —i_(m_z_:_w_E Z +m%+l>m}
<Kilbtibt s Lo Emen——L ol m17)

1 72 7\;27 1 M (m_+ 7')2 m(m___r)g .
Now, since (m + ) > 2mr,
S R S W i
ey IS e 1A (8.18)
Also
> 1 _1lg 11
Smrnaetan =13 me0inty - ) 619)
But
© 1 © 1 _7:—2
EmEn) s <2¥ =g, (8.20)
and
st 1 _1 _lr—ll
= (m#r)m(m_«r)v«r—z- SE oL (8.21)

which is bounded for positive values of 7, being of the order of (log r)/r. Thus the
series on the left of (8.19) is of the order of 1/r, and hence, since A2 > 52/a?, there
exists a positive constant K, such that

Isl=] 2 G <K, )
N w( e _ (8.22)
= 5 - m+r! Do — 2
——!_Ew m2+/\2 1<f’l’ (795 :’:1,:]: ,...)

We have already made the legitimate assumption in (8.14) that the coefficients
V, in the Fourier expansion of d2u,/dy? are of the order of 1/| 7|. This is true,
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by RieMaNN’s Lemma*, if d?u,/dy? is of limited total fluctuation ; we would naturally
assume this to be the case in the physical problem. We might legitimately make
the same assumption regarding the coefficients U, of the Fourier expansion of
but this does not appear to be enough to ensure the convergence of the series (8.8),
(8.10).  We shall now assume that the coefficients U, in the Fourier expansion of wu, are of
the order of 1/r*. This assumption is not altogether unnatural from a physical point
of view. We have generally

1 .
U =g w0 exp (— mi/h) &

— 1) P 1 (" d .
- U L%L_b o | Toesp (—roift) b. . (329
The second term is of the order of 1/r2.  Hence in order that U, may be of the order of
1/r% it is necessary and sufficient that

wy (B) =y (— B)y o o . (8.24)

that is, the slipping-velocities of the steady motion on the two walls must be equal. Since this
condition is not in general fulfilled for the motion of an inviscid liquid, it seems that
our investigation cannot deal with the general velocity-profile. However, the
“ inviscid liquid ” is at best an artificial conception, acquiring its physical significance
by approximating to the liquid of small viscosity. Since the condition (8.24) is
necessarily fulfilled for a viscous liquid (no matter how small its viscosity), provided
that the walls are at rest, the disturbance of the motion of an inviscid liquid whose
velocity-profile satisfies (8.24) is certainly of the greatest physical interest.
Under the stated hypothesis, then, we have

U <Ky |UI<Kyr, (=+1+2.), .. .82

for some positive constant K;. Thus by (8.13) and (8.22) we see that for any
assigned value of s, there exists a positive constant K, such that

’Nr,r,:l<K4a (1’—‘:0, + la"')’ A
lNr,O,sl <'I'T> (f == :I: 19 :l: 2) "'))

. (8.26
INo,q,s!<'ﬂ, (=41, +2,..), -, (8.26)

1 1 1
= T a—a e

From the argument at (8.17) it follows that

N, <K, Jorg= kL2 A |

s (e=0) 1 L. (8.2])
g= — ®

(¢ # 1)]qg—rl¢’

* (f. WaITTAKER and WATsoN, ¢ Modern Analysis,” p. 166.
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is of the order of 1/|r|. Hence there exists a positive constant C such that

<+22_ql_><c 71,
\

o=1

[2 2 (¢g#0) 2 c o
K“TW l-q_Z*w (g #= 1 <lg — rlqz"l—q ]r])} < 7]’ (r=+1 42 )J

We are now in a position to discuss the convergence of (8.10). Since «, , are
coefficients in the Fourier series (7.1) with respect to y, it follows from (8.9) that
for the assigned value of s

o] <K, |o@ <K/, (r=+142.), .. (829

where K is some positive constant. The series (8.10) for n =0 will then be
convergent, and will define o) such that

N

o < % ]No,qu§0>:|<KK\ ) 21211'><CK
g= —® q
ol < 2 N, of)
< N o2l 4 N o]+ 5 (TZ 0N, o b (830
2 0) 1 1 1]
<k 1yl 3 (a# 4 |
* H Il q=—w(q?”<(q—f) gl Tl g q2lr!>5
<(lerI{ r=+1,+2.)

When we apply the inequalities thus written to (8.10) with n == 1, we again obtain
convergent series, and we find

o] < C2K, [o®] < C2K/|r], (r=4+1, +£2,..). . . (831)
Hence, by induction, all the series (8.10) converge absolutely and we have
lof| < CK, |of <CK/r, (r=+1, £2,..;2=0,1,2..). . (832
Thus the nth term of the power series (8.8) is less in absolute value than

LK sl if 7=0,
1 0K

[Azl* if r=%1, £2 ...
nl Tr]

But these are the nth terms of series which converge for all values of =. Hence the
series (8.8) converge absolutely for all values of «. Moreover, we have
K (O [7\ TI

Io),,s (t)l < = lf] Z o

, = 1,£2..). ... (833
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This shows that w, , () is of the order of 1/|r|, but it does not necessarily follow
that the series

o, (t) exp (rnyi/b),
converges, although we have no reason to suppose that it diverges. We shall
assume convergence, leaving the argument incomplete in this respect.
Let us now sum up the results of this discussion.

THEOREM VIII—For any assigned value of s the equations (7.10) possess solutions o, , ()
mn the form of power series in ¢ (8.8), which converge for all values of &, and satisfy the assigned
initial conditions (7.4), provided that the velocity of the undisturbed motion is the same on both
walls.*  The coefficients in the power series are determined by the recurrence formule (8.10)
The vorticity of the disturbance at time ¢ is given by (7.9).

As regards the analytical validity of the processes, we are to remember that, on
account of (7.21), (7.9) 1is not in reality an infinite series with respect to s.
Consequently there is no question of the validity of the term-by-term differentiation
effected in (7.7). It will be noted that we have never found it necessary to differ-
entiate (7.9) term-by-term with respect to » : that would, in general, not be valid.
It is hoped, therefore that Theorems VII and VIII contain the correct solution to
the problem of the small periodic disturbance of the steady flow of an inviscid liquid
between parallel planes, the only restrictions heing

(i) the velocities on the two walls in the steady motion are equal ;

(ii) the initial disturbance is represented by a finite number of sinusoidal
terms as far as its dependence on x is concerned.

The theory is valid even though &2u,/dy? should have a finite number of
discontinuities, du,/dy being continuous.

9—Calculation of the coefficients in the power series

The calculation of the coeflicients in the power series (8.8) by means of the
recurrence formule (8.9), (8.10) suffers from the defect that a separate calculation
is required for the study of each disturbance of a given velocity-profile. ~We shall
now remedy this defect, and show how one calculation will suffice for all disturbances,
the value of |s| (i.e., the wave-length of the disturbance with respect to x) being
assigned.

* This condition is, of course, fulfilled if the velocity-profile is represented by a finite number of

terms of the series OZOI U, exp (rreyifb).

r = — 0

VOL. CCXXXIV.—A L
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Tt follows from the recurrence formule (8.9), (8.10) that o® will be linear

functions of
vee y 0(—1,5; “O,.r Xy, 59 oo o
Let us put

oM = p_z_ K™ o s (r=0,+1,..;5=+1+2..;2=0,1,2,..), (91

the quantities K, , being independent of the «’s. Substituting in (8.10), and

7,058

regarding the «’s as arbitrary, we obtain

0
KeV= X N,,, K&, (r=0 +1,..;5=+1,+2 ... ;2=012..). (9.2
=00

q

Thus if we denote by K® the matrix whose (7, p) element is
Ko o

and by N, the matrix whose (r, p) element is

N, pss
then (9.2) reads :
Ko = N, .K», ... ... ... (9.3)
and hence we obtain
K?P =N Ko . .. ... ..... (9.4)

where N7 is the nth power of the matrix N,. But putting n = 0 in (9.1) and remem-
bering that o == «, , by (8.9), we have

KO=1. ... . ... ... .. . (9.9)
Thus (9.4) reads
KP=Nr. . ... ..... ... (9.6)

The problem of calculating the coefficients o, thus reduces to the calculation of the nth power
of the matrix N,. 'To see whether this calculation is possible, we revert to (8.26),
which shows the order of magnitude of the elements of N, ; we shall write, however,
as is obviously legitimate,

]N,,,,x]< K, (r=0,4+1, ... I

lN,,o,31<-]%, (r=+1,+2..)

Nool<[#,  (@=+L %2 . | L 97)
[ 1 1 1 1

Nr q, s <K4 T390 »

N <Kot =0 Ir!+lq—rllql+lqu}

(rpg=+1,4+2,...; r#q)J
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Now when we form the matrix

Z NupNoso « v oo v oo enes (98

p= -

it is easy to see that the series converges and that the moduli of the elements of the
matrix so formed satisfy inequalities of the form (9.7) but with a different constant :
we make use of the result, established in §8, that

s (m#0) 1 or % (m#0) 1
e —nw A % W) e
is of the order of 1/|r|]. Hence it follows by induction that all the matrices N
exist, although it is by no means to be assumed that their elements remain finite
as n tends to infinity.
Let us now consider the case of the parabolic velocity-profile

Uy () =k (B2 — 2. .« o e (9.9)
1

b
U, = o | k(8 — %) exp (= rmyi/b) dy

We have then

[2kB2 if 7= 0,
:JI 2kb

— (— 1) ......... (9.10)
;1P dPy, _
V, = ZbJ > exp (— rnyi/b) dy
. — 2k if r=0,
. Sl 00 L . (9.11)
Thus, by (8.13),
N =2kb2{n_2__ L A2 tanh nxx} 7
nns n2 (3 24 (7’2 + 222w,
2/cb — 1 A2 tanh =2, ¢+ (9.12
N,,, = 20 py- : 1t 012)
e = (=) % AR RN e R
(rg=0,+1,4+2,...5 g #7r) )

Although the calculation of the elements of N2, N2, ... presents no difficulty, the
elements increase in complexity of expression. We shall not trouble to write down
analytical expressions for them. The task of preparing arithmetical tables of
N2, N3, ... is not an impossible one. The factor 2kb2/=? does not enter into the
calculation : it merely appears as a factor (2k6%/=2)" in N,". The rest of the calcu-
lation is purely arithmetical, when the value of 2, has been assigned. We may
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note that for the limiting cases A,— 0, A, > o (corresponding respectively to
infinitely long and infinitely short waves of disturbance) we have

NOO:—O

NrOs_NOrsz
A:£%<Nr,r,s_%'b_2 ——— > (’q=:’:1’i2’...;r#q); (9.13)

_ SR (—1)

Noer =70 <r—q>2j

Nr,r;s_—oalf?2 T;; \l
lim N b o(g=0,+1,+£2 ...;7r%q). (914
e a1y qJ (r.q 9) )
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